资源类型

期刊论文 944

年份

2024 3

2023 89

2022 80

2021 70

2020 62

2019 58

2018 52

2017 46

2016 33

2015 46

2014 44

2013 25

2012 25

2011 30

2010 35

2009 44

2008 38

2007 47

2006 9

2005 11

展开 ︾

关键词

高速铁路 14

高质量发展 8

创新 5

关键技术 4

技术体系 4

三峡工程 3

京沪高速铁路 3

发展 3

高压 3

中国高速铁路 2

二氧化碳 2

产业发展 2

优化设计 2

低温SOFC 2

冲击波 2

勘探开发 2

增材制造 2

指标体系 2

混凝土面板堆石坝 2

展开 ︾

检索范围:

排序: 展示方式:

Localized high-concentration electrolytes for lithium metal batteries: progress and prospect

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1354-1371 doi: 10.1007/s11705-022-2286-4

摘要: With the increasing development of digital devices and electric vehicles, high energy-density rechargeable batteries are strongly required. As one of the most promising anode materials with an ultrahigh specific capacity and extremely low electrode potential, lithium metal is greatly considered an ideal candidate for next-generation battery systems. Nevertheless, limited Coulombic efficiency and potential safety risks severely hinder the practical applications of lithium metal batteries due to the inevitable growth of lithium dendrites and poor interface stability. Tremendous efforts have been explored to address these challenges, mainly focusing on the design of novel electrolytes. Here, we provide an overview of the recent developments of localized high-concentration electrolytes in lithium metal batteries. Firstly, the solvation structures and physicochemical properties of localized high-concentration electrolytes are analyzed. Then, the developments of localized high-concentration electrolytes to suppress the formation of dendritic lithium, broaden the voltage window of electrolytes, enhance safety, and render low-temperature operation for robust lithium metal batteries are discussed. Lastly, the remaining challenges and further possible research directions for localized high-concentration electrolytes are outlined, which can promisingly render the practical applications of lithium metal batteries.

关键词: high-concentration electrolyte     localized high-concentration electrolyte     lithium metal battery     solid electrolyte interphase     dendrite    

Effect of electrolyte concentration on the tribological performance of MAO coatings on aluminum alloys

Chao Wang, Jun Chen, Jihua He, Jing Jiang, Qinyong Zhang

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1065-1071 doi: 10.1007/s11705-019-1909-x

摘要: Micro-arc oxidation (MAO) is an efficient approach to improve the hardness, wear resistance, and other properties of aluminum alloys. In order to investigate the effect of the electrolyte concentration on the properties of MAO coatings for LY12 alloy, the voltage variation during the MAO process was recorded. The surface morphologies and phase compositions of the coatings produced with different electrolytes were investigated using scanning electron microscopy and X-ray diffraction, respectively. The roughness and thickness of the coatings were measured using a pocket roughness meter and an eddy-current thickness meter, respectively. The tribological performances of the coatings were investigated against GCr15 bearing steel on a ball-on-disc wear tester in open air. The results showed that with an increase in the Na SiO content, the working voltage of the MAO process decreased, the roughness and thickness of the coatings increased significantly, and the relative content of the -Al O phase decreased. With an increase in the KOH content, the working voltage decreased slightly, the roughness and thickness of the coatings increased slightly, and the α- and -Al O phase contents remained unchanged. The friction coefficient and wear rate of the coatings increased with an increase in the Na SiO and KOH concentrations. A decrease in the porosity and roughness and an increase in the α-Al O content of the coatings reduced their wear mass loss.

关键词: aluminum alloy     micro-arc oxidation     coating     electrolyte concentration     tribological performance    

Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery

Tong Zhang, Elie Paillard

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 577-591 doi: 10.1007/s11705-018-1758-z

摘要:

Lithium-ion batteries are a key technology in today’s world and improving their performances requires, in many cases, the use of cathodes operating above the anodic stability of state-of-the-art electrolytes based on ethylene carbonate (EC) mixtures. EC, however, is a crucial component of electrolytes, due to its excellent ability to allow graphite anode operation–also required for high energy density batteries–by stabilizing the electrode/electrolyte interface. In the last years, many alternative electrolytes, aiming at allowing high voltage battery operation, have been proposed. However, often, graphite electrode operation is not well demonstrated in these electrolytes. Thus, we review here the high voltage, EC-free alternative electrolytes, focusing on those allowing the steady operation of graphite anodes. This review covers electrolyte compositions, with the widespread use of additives, the change in main lithium salt, the effect of anion (or Li salt) concentration, but also reports on graphite protection strategies, by coatings or artificial solid electrolyte interphase (SEI) or by use of water-soluble binder for electrode processing as these can also enable the use of graphite in electrolytes with suboptimal intrinsic SEI formation ability.

关键词: lithium-ion     electrolyte     solid electrolyte interphase     additives     high voltage     graphite    

Cohesive zone model-based analyses of localized leakage of segmentally lined tunnels

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 503-521 doi: 10.1007/s11709-023-0927-4

摘要: This paper presents a novel approach for simulating the localized leakage behavior of segmentally lined tunnels based on a cohesive zone model. The proposed approach not only simulates localized leakage at the lining segment, but also captures the hydromechanically coupled seepage behavior at the segmental joints. It is first verified via a tunnel drainage experiment, which reveals its merits over the existing local hydraulic conductivity method. Subsequently, a parametric study is conducted to investigate the effects of the aperture size, stratum permeability, and spatial distribution of drainage holes on the leakage behavior, stratum seepage field, and leakage-induced mechanical response of the tunnel lining. The proposed approach yields more accurate results than the classical local hydraulic conductivity method. Moreover, it is both computationally efficient and stable. Localized leakage leads to reduced local ground pressure, which further induces outward deformation near the leakage point and slight inward deformation at its diametrically opposite side. A localized stress arch spanning across the leakage point is observed, which manifests as the rotation of the principal stresses in the adjacent area. The seepage field depends on both the number and location of the leakage zones. Pseudostatic seepage zones, in which the seepage rate is significantly lower than that of the adjacent area, appear when multiple seepage zones are considered. Finally, the importance of employing the hydromechanical coupled mechanism at the segment joints is highlighted by cases of shallowly buried tunnels subjected to surface loading and pressure tunnels while considering internal water pressure.

关键词: segmentally lined tunnel     localized leakage     cohesive element     hydraulic behavior     numerical modeling    

Acid resistance of methanogenic bacteria in a two-stage anaerobic process treating high concentration

ZHOU Xuefei, REN Nanqi

《环境科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 53-56 doi: 10.1007/s11783-007-0010-8

摘要: In this study, the two-stage upflow anaerobic sludge blanket (UASB) system and batch experiments were employed to evaluate the performance of anaerobic digestion for the treatment of high concentration methanol wastewater. The acid resistance of granular sludge and methanogenic bacteria and their metabolizing activity were investigated. The results show that the pH of the first UASB changed from 4.9 to 5.8 and 5.5 to 6.2 for the second reactor. Apparently, these were not the advisable pH levels that common methanogenic bacteria could accept. The methanogenic bacteria of the system, viz. Methanosarcina barkeri, had some acid resistance and could still degrade methanol at pH 5.0. If the methanogenic bacteria were trained further, their acid resistance would be improved somewhat. Granular sludge of the system could protect the methanogenic bacteria within its body against the impact of the acidic environment and make them degrade methanol at pH 4.5. The performance of granular sludge was attributed to its structure, bacteria species, and the distribution of bacterium inside the granule.

关键词: pH     Granular     upflow anaerobic     advisable pH     methanogenic    

Influencing mechanism of high solid concentration on anaerobic mono-digestion of sewage sludge without

Yuyao ZHANG,Huan LI,Can LIU,Yingchao CHENG

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1108-1116 doi: 10.1007/s11783-015-0806-x

摘要: High-solids anaerobic digestion of sewage sludge was a promising process, but high solid concentration negatively influenced methane production. The influencing mechanism was systematically analyzed in this study through a series of static anaerobic digestion experiments at total solids (TS) contents of 3%–15%. The results showed that TS 6% was the boundary between low-solids and high-solids anaerobic digestion, and the accumulative methane yield decreased exponentially when TS increased from 6% to 15%. The performance of anaerobic digestion was directly determined by the efficiency of mass transfer, and the relation between methane yield and sludge diffusive coefficients was well described by a power function. Thus, the increasing TS resulted in an exponential increase in sludge viscosity but an exponential decrease in diffusive coefficient. The blocked mass transfer led to the accumulation of volatile fatty acids (VFAs) and free ammonia. Acetic metabolism was the main process, whereas butyric and propionic metabolisms occurred at the initial stage of high-solids anaerobic digestion. The concentration of VFAs reached the maximum at the initial stage, which were still lower than the threshold influencing methanogens. The concentration of free ammonia increased gradually, and the methanogenesis was inhibited when free ammonia nitrogen exceeded 50 mg·L . Consequently, the deterioration of high-solids anaerobic digestion was related to the blocked mass transfer and the resulting ammonia accumulation.

关键词: anaerobic digestion     methane     sewage sludge     volatile fatty acids     free ammonia    

Boosting the direct conversion of NHHCO electrolyte to syngas on Ag/Zn zeolitic imidazolate framework

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1196-1207 doi: 10.1007/s11705-022-2289-1

摘要: The electrochemical reduction of NH4HCO3 to syngas can bypass the high energy consumption of high-purity CO2 release and compression after the ammonia-based CO2 capture process. This technology has broad prospects in industrial applications and carbon neutrality. A zeolitic imidazolate framework-8 precursor was introduced with different Ag contents via colloid chemical synthesis. This material was carbonized at 1000 °C to obtain AgZn zeolitic imidazolate framework derived nitrogen carbon catalysts, which were used for the first time for boosting the direct conversion of NH4HCO3 electrolyte to syngas. The AgZn zeolitic imidazolate framework derived nitrogen carbon catalyst with a Ag/Zn ratio of 0.5:1 achieved the highest CO Faradaic efficiency of 52.0% with a current density of 1.15 mA·cm–2 at –0.5 V, a H2/CO ratio of 1–2 (–0.5 to –0.7 V), and a stable catalytic activity of more than 6 h. Its activity is comparable to that of the CO2-saturated NH4HCO3 electrolyte. The highly discrete Ag-Nx and Zn-Nx nodes may have combined catalytic effects in the catalysts synthesized by appropriate Ag doping and sufficient carbonization. These nodes could increase active sites of catalysts, which is conducive to the transport and adsorption of reactant CO2 and the stability of *COOH intermediate, thus can improve the selectivity and catalytic activity of CO.

关键词: Ag catalyst     zeolitic imidazolate framework     CO2 electroreduction     ammonium bicarbonate electrolyte     syngas    

porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with high

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 387-394 doi: 10.1007/s11705-022-2250-3

摘要: Porous carbons with high specific area surfaces are promising electrode materials for supercapacitors. However, their production usually involves complex, time-consuming, and corrosive processes. Hence, a straightforward and effective strategy is presented for producing highly porous carbons via a self-activation procedure utilizing zinc gluconate as the precursor. The volatile nature of zinc at high temperatures gives the carbons a large specific surface area and an abundance of mesopores, which avoids the use of additional activators and templates. Consequently, the obtained porous carbon electrode delivers a satisfactory specific capacitance and outstanding cycling durability of 90.9% after 50000 cycles at 10 A∙g–1. The symmetric supercapacitors assembled by the optimal electrodes exhibit an acceptable rate capability and a distinguished cycling stability in both aqueous and ionic liquid electrolytes. Accordingly, capacitance retention rates of 77.8% and 85.7% are achieved after 50000 cycles in aqueous alkaline electrolyte and 10000 cycles in ionic liquid electrolyte. Moreover, the symmetric supercapacitors deliver high energy/power densities of 49.8 W∙h∙kg–1/2477.8 W∙kg–1 in the Et4NBF4 electrolyte, outperforming the majority of previously reported porous carbon-based symmetric supercapacitors in ionic liquid electrolytes.

关键词: self-activation     zinc organic salts     abundant mesopores     symmetric supercapacitor     liquid electrolyte    

Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 709-719 doi: 10.1007/s11705-021-2078-2

摘要: Pervaporation desalination has a unique advantage to recycle concentrated salt solutions. The merit can be applied to treat alkaline wastewater if the membrane has superior alkali-resistance. In this paper, we used polyethylene microfiltration membrane as the substrate and deposited a glutaraldehyde crosslinked sodium carboxymethylcellulose layer by spray-coating. Pervaporation flux of the composite membrane reached 35€±€2 kg·m–2·h–1 with a sodium chloride rejection of 99.9%€±€0.1% when separating a 3.5 wt-% sodium chloride solution at 70 °C. The desalination performance was stable after soaking the membrane in a 20 wt-% NaOH solution at room temperature for 9 d and in a 10 wt-% NaOH solution at 60 °C for 80 h. Moreover, the membrane was stable in 4 wt-% sulfuric acid and a 500 mg·L−1 sodium hypochlorite solution. In a process of concentrating a NaOH solution from 5 to 10 wt-% at 60 °C, an average water flux of 23 kg·m–2·h–1 with a NaOH rejection over 99.98% was obtained.

关键词: pervaporation     alkaline solution concentration     polyethylene membrane     acid resistance     chlorine tolerance    

A Novel Electrochemical Reactor for Nitrogen and Phosphorus Recovery from Domestic Wastewater

Shiting Ren, Mengchen Li, Jianyu Sun, Yanhong Bian, Kuichang Zuo, Xiaoyuan Zhang, Peng Liang, Xia Huang

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0983-x

摘要: To separate and concentrate NH4+ and PO43 from the synthetic wastewater to the concentrated solution through a novel electrochemical reactor with circulated anode and cathode using the difference of the concentration between electrode chamber and middle chamber. In recent years, the research on electrochemical processes have been focused on phosphate and ammonium removal and recovery. Among the wide range of possibilities with regards to electrochemical processes, capacitive deionization (CDI) saves the most energy while at the same time does not have continuity and selectivity. In this study, a new electrochemical reactor with electrolyte cyclic flowing in the electrode chambers was constructed to separate and concentrate phosphate and ammonium continuously and selectively from wastewater, based on the principle of CDI. At the concentration ratio of NaCl solution between the electrode chambers and the middle chamber (r) of 25 to 1, phosphate and ammonium in concentration level of domestic wastewater can be removed and recovered continuously and selectively as struvite. Long-term operation also indicated the ability to continuously repeat the reaction and verified sustained stability. Further, the selective recovery at the certain r could also be available to similar technologies for recovering other kinds of substances.

关键词: Nutrients recovery     Electrochemical reactor     Electrolyte cyclic flowing     Concentration ratio     Struvite    

A review on the development of electrolytes for lithium-based batteries for low temperature applications

《能源前沿(英文)》 2023年 第17卷 第1期   页码 43-71 doi: 10.1007/s11708-022-0853-5

摘要: The aerospace industry relies heavily on lithium-ion batteries in instrumentation such as satellites and land rovers. This equipment is exposed to extremely low temperatures in space or on the Martian surface. The extremely low temperatures affect the discharge characteristics of the battery and decrease its available working capacity. Various solvents, cosolvents, additives, and salts have been researched to fine tune the conductivity, solvation, and solid-electrolyte interface forming properties of the electrolytes. Several different resistive phenomena have been investigated to precisely determine the most limiting steps during charge and discharge at low temperatures. Longer mission lifespans as well as self-reliance on the chemistry are now highly desirable to allow low temperature performance rather than rely on external heating components. As Martian rovers are equipped with greater instrumentation and demands for greater energy storage rise, new materials also need to be adopted involving next generation lithium-ion chemistry to increase available capacity. With these objectives in mind, tailoring of the electrolyte with higher-capacity materials such as lithium metal and silicon anodes at low temperatures is of high priority. This review paper highlights the progression of electrolyte research for low temperature performance of lithium-ion batteries over the previous several decades.

关键词: electrolyte     lithium-ion     low temperature     aerospace     solid-electrolyte interface    

A rare chronic constrictive pericarditis with localized adherent visceral pericardium and normal parietal

null

《医学前沿(英文)》 2016年 第10卷 第3期   页码 356-359 doi: 10.1007/s11684-016-0467-6

摘要:

Classic constrictive pericarditis (CP) is characterized by fibrous scarring and adhesion of both the visceral pericardium and the parietal pericardium, which leads to restricted cardiac filling. However, diagnosing CP with normal thickness pericardium and without calcification is still a challenge. The predominant cause in the developed world is idiopathic or viral pericarditis, followed by post-cardiac surgery and post-radiation. Tuberculosis still remains a common cause of CP in developing countries. In this report, we describe a rare case of idiopathic localized constrictive visceral pericardium with normal thickness of the parietal pericardium in a middle-aged man. The patient presented with unexplained right heart failure and echocardiography showed moderate bi-atrial enlargement which should be?identified with the restrictive cardiomyopathy.?After 10 months of conservative treatment, the progression of right heart failure was remaining. A pericardiectomy was performed and the patient recovered. This case serves as a reminder to consider CP in patients with unexplained right heart failure, so that timely investigation and treatment can be initiated.

关键词: constrictive pericarditis     heart failure     pericardiectomy    

处理我国高浓度工业废水的工艺技术研究

孙珮石,钱彪,洪品杰,原田吉明,杨英,郝玉昆

《中国工程科学》 2003年 第5卷 第6期   页码 68-73

摘要:

利用引进的CWO处理技术及其200 L/d小型工业试验装置,对我国焦化、造纸、生物制药等十多种行业的高浓度工业有机废水进行处理试验研究,结果表明CWO技术及装置对处理我国高浓度工业有机废水具有良好的适用性。在昆明自主设计、制造、集成建设和运行了一套20 m3/d工业应用装置,完成了对该技术的国产化研究与示范工程。该工业化应用装置对造纸黑液、焦化废水等两种高浓度生化难降解工业有机废水具有良好的净化处理性能,废水中的CODCr,NH3-N等的去除率均达99%以上,可以使废水经处理后连续稳定地达标排放,并具有较好的经济性。

关键词: 湿式催化氧化技术(CWO)     高浓度工业废水     工艺流程    

PM concentration declining saves health expenditure in China

《环境科学与工程前沿(英文)》 2023年 第17卷 第7期 doi: 10.1007/s11783-023-1690-4

摘要:

● Monthly hospitalization expenses are sensitive to increases in PM2.5 exposure.

关键词: Air pollution     Health expenditure     PM2.5 concentration     Economic impact     Heterogeneous effect    

Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing

Jun HUANG, Zhe LI, Jianbo ZHANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 334-364 doi: 10.1007/s11708-017-0490-6

摘要: Ionomer impregnation represents a milestone in the evolution of polymer electrolyte fuel cell (PEFC) catalyst layers. Ionomer acts as the binder, facilitates proton transport, and thereby drastically improves catalyst utilization and effectiveness. However, advanced morphological and functional characterizations have revealed that up to 60% of Pt nanoparticles can be trapped in the micropores of carbon support particles. Ionomer clusters and oxygen molecules can hardly enter into micropores, leading to low Pt utilization and effectiveness. Moreover, the ionomer thin-films covering Pt nanoparticles can cause significant mass transport loss especially at high current densities. Ionomer-free ultra-thin catalyst layers (UTCLs) emerge as a promising alternative to reduce Pt loading by improving catalyst utilization and effectiveness, while theoretical issues such as the proton conduction mechanism remain puzzling and practical issues such as the rather narrow operation window remain unsettled. At present, the development of PEFC catalyst layer has come to a crossroads: staying ionomer-impregnated or going ionomer-free. It is always beneficial to look back into the past when coming to a crossroads. This paper addresses the characterization and modeling of both the conventional ionomer-impregnated catalyst layer and the emerging ionomer-free UTCLs, featuring advances in characterizing microscale distributions of Pt particles, ionomer, support particles and unraveling their interactions; advances in fundamental understandings of proton conduction and flooding behaviors in ionomer-free UTCLs; advances in modeling of conventional catalyst layers and especially UTCLs; and discussions on high-impact research topics in characterizing and modeling of catalyst layers.

关键词: polymer electrolyte fuel cell     ultra-thin catalyst layer     electrostatic interactions     characterization and modeling     structure-property-performance relation     water management    

标题 作者 时间 类型 操作

Localized high-concentration electrolytes for lithium metal batteries: progress and prospect

期刊论文

Effect of electrolyte concentration on the tribological performance of MAO coatings on aluminum alloys

Chao Wang, Jun Chen, Jihua He, Jing Jiang, Qinyong Zhang

期刊论文

Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery

Tong Zhang, Elie Paillard

期刊论文

Cohesive zone model-based analyses of localized leakage of segmentally lined tunnels

期刊论文

Acid resistance of methanogenic bacteria in a two-stage anaerobic process treating high concentration

ZHOU Xuefei, REN Nanqi

期刊论文

Influencing mechanism of high solid concentration on anaerobic mono-digestion of sewage sludge without

Yuyao ZHANG,Huan LI,Can LIU,Yingchao CHENG

期刊论文

Boosting the direct conversion of NHHCO electrolyte to syngas on Ag/Zn zeolitic imidazolate framework

期刊论文

porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with high

期刊论文

Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation

期刊论文

A Novel Electrochemical Reactor for Nitrogen and Phosphorus Recovery from Domestic Wastewater

Shiting Ren, Mengchen Li, Jianyu Sun, Yanhong Bian, Kuichang Zuo, Xiaoyuan Zhang, Peng Liang, Xia Huang

期刊论文

A review on the development of electrolytes for lithium-based batteries for low temperature applications

期刊论文

A rare chronic constrictive pericarditis with localized adherent visceral pericardium and normal parietal

null

期刊论文

处理我国高浓度工业废水的工艺技术研究

孙珮石,钱彪,洪品杰,原田吉明,杨英,郝玉昆

期刊论文

PM concentration declining saves health expenditure in China

期刊论文

Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing

Jun HUANG, Zhe LI, Jianbo ZHANG

期刊论文